If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-30x+16=0
a = 12; b = -30; c = +16;
Δ = b2-4ac
Δ = -302-4·12·16
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{33}}{2*12}=\frac{30-2\sqrt{33}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{33}}{2*12}=\frac{30+2\sqrt{33}}{24} $
| 0.5s=15.2 | | 0.5s+6=21 | | 0.5s+6=2+ | | 3x+29=8 | | (x-3)/2=(2x-5)/3 | | -4x+2=-4(x-1)-2 | | 2(2x+1)=3-(x-1) | | 10/3x=16.9 | | Y/4=10.5y | | 14+16x=50 | | 1=(150+0.6y)/y | | 8^2x=1024 | | 5c=2(3+c) | | 4a+5=2+3,25 | | 3+4x=x+24 | | 132=0.3x+x+(x+20) | | 4x(x-2)=2x+6 | | (0.3x)-(x)-(x+20)=132 | | (1/3(x))-(x)-(x+20)=132 | | (1/3(x))+(x)+(x+20)=132 | | (1/3x)+(x)+(x+20)=132 | | (0.3x)+(x)+(x+20)=132 | | (1/3.x)+x+(x+20)=132 | | 6x-19=3x+28 | | 2÷7+2=3÷5x | | 2x+20=132 | | 3y-10=-22 | | x-(x+20)=132 | | 3y-10=22 | | 2x/3=4x-20 | | x-0.25x=6,00,000 | | 2(x+3)(x+3)-4=20 |